
Pharmacology, Biochemistry and Behavior 100 (2012) 592–600

Contents lists available at SciVerse ScienceDirect

Pharmacology, Biochemistry and Behavior

j ourna l homepage: www.e lsev ie r .com/ locate /pharmbiochembeh
A role for 5-HT1A receptors in the basolateral amygdala in the development of
conditioned defeat in Syrian hamsters

Kathleen E. Morrison ⁎, Matthew A. Cooper
Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
⁎ Corresponding author at: Department of Psychology,
of Tennessee, Knoxville, TN 37996-0900, USA. Tel.: +1 8
3330.

E-mail address: kmcinty1@utk.edu (K.E. Morrison).

0091-3057/$ – see front matter © 2011 Elsevier Inc. All
doi:10.1016/j.pbb.2011.09.005
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 July 2011
Received in revised form 12 September 2011
Accepted 16 September 2011
Available online 24 September 2011

Keywords:
Social defeat
Serotonin
Stress
Anxiety
Fear
Defensive behavior
The basolateral nucleus of the amygdala (BLA) is a key brain region regulating behavioral changes following
stressful events, including social defeat. Previous research has shown that activation of serotonin (5-HT) 1A
receptors in the BLA reduces conditioned fear and anxiety-like behavior. The objective of this study was to
test whether 5-HT1A receptors in the BLA contribute to conditioned defeat in male Syrian hamsters (Mesocri-
cetus auratus). We tested whether injection of the selective 5-HT1A receptor agonist flesinoxan (400 ng,
800 ng, or 1200 ng in 200 nl saline) into the BLA prior to social defeat would reduce the acquisition of condi-
tioned defeat, and whether a similar injection prior to testing would reduce the expression of conditioned
defeat. We also tested whether injection of the selective 5-HT1A receptor antagonist WAY-100635 (400 ng
or 1600 ng in 200 nl saline) into the BLA prior to social defeat would enhance the acquisition of conditioned
defeat, and whether a similar injection prior to testing would enhance the expression of conditioned defeat.
We found that injection of flesinoxan into the BLA decreased both the acquisition and expression of condi-
tioned defeat. However, injection of WAY-100635 into the BLA did not alter the acquisition or expression
of conditioned defeat. These data indicate that pharmacological activation of 5-HT1A receptors in the BLA
is sufficient to impair the acquisition and expression of conditioned defeat. Our results suggest that pharma-
cological treatments that activate 5-HT1A receptors in the BLA are capable of reducing the development of
stress-induced changes in behavior.
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1. Introduction

In Westernized societies, psychosocial stressors are more com-
monly experienced than physical stressors and are a contributing fac-
tor in the onset of psychiatric disorders such as depression (Heim and
Nemeroff, 2001; Kendler et al., 1999) and post-traumatic stress dis-
order (Kuo et al., 2003; Risbrough and Stein, 2006; Vermetten and
Bremner, 2002). In animal models, psychosocial stressors such as so-
cial defeat produce robust activation of the HPA axis (Blanchard et al.,
1995; Huhman et al., 1992; Koolhaas et al., 1997). Social defeat also
leads to marked behavioral changes including increased depression-
and anxiety-like behavior (Berton et al., 1998; Frischknecht et al.,
1982; Heinrichs et al., 1992; Keeney et al., 2006; Krishnan et al.,
2007). In this study, we use a social defeat model in Syrian hamsters
called conditioned defeat, in which a single social defeat results in a
loss of normal territorial aggression and an increase in submissive
and defensive behavior in later non-aggressive social encounters.
Acute social defeat paradigms such as conditioned defeat are valuable
partly because they provide an ethologically relevant model for
investigating the neural mechanisms underlying stress-induced
changes in behavior.

The basolateral complex of the amygdala (BLA) is a critical neural
structure underlying both conditioned defeat and conditioned fear.
Pharmacological blockade of NMDA receptors in the BLA blocks the
acquisition of fear-potentiated startle (Campeau et al., 1992; Gerwitz
and Davis, 1997), conditioned freezing (Fanselow and Kim, 1994),
and conditioned defeat (Jasnow et al., 2004). Also, the NR2B subunit
of the NMDA receptor in the BLA plays a critical role in the neural sig-
naling that underlies the acquisition of conditioned fear and condi-
tioned defeat (Day et al., 2011; Rodrigues et al., 2001; Tang et al.,
1999). Over-expression of CREB in the BLA using viral vector-mediated
gene transfer enhances the acquisition of both fear-potentiated startle
(Josselyn et al., 2001) and conditioned defeat (Jasnow et al., 2005).
Finally, blocking protein synthesis in the BLA with anisomycin impairs
the acquisition of conditioned freezing (Schafe and LeDoux, 2000) and
conditioned defeat (Markham et al., 2010; Markham and Huhman,
2008). In sum, these data suggest that the neurochemical signals in
the BLA that regulate the formation of conditioned defeat are similar
to those that regulate the formation of conditioned fear.

One important difference between conditioned fear and condi-
tioned defeat appears to be the role of serotonin (5-HT). The 5-HT
system plays a key role in the etiology and treatment of stress-related
mental illness (Harvey et al., 2004; Vieweg et al., 2006). The 5-HT1A
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receptor is also an important factor in the psychopathology underlying
stress-related mental illness, and some novel pharmacological treat-
ments for affective disorders target the 5-HT1A receptor (Dawson and
Watson, 2009; Savitz et al., 2009). The 5-HT1A receptor can be
expressed as a somatodendritic autoreceptor in the dorsal raphe
nucleus (DRN) or as a postsynaptic heteroreceptor in the forebrain. In
both cases, the 5-HT1A receptor produces hyperpolarization (Barnes
and Sharp, 1999; Hoyer et al., 2002). Although early studies indicated
that 5-HT1A receptors did not play an important role in fear-potentiated
startle (Davis et al., 1988; Melia and Davis, 1991), later research found
that administration of a 5-HT1A receptor partial agonist reduced the
expression of fear-potentiated startle (Risbrough et al., 2003). More
recently studies have suggested that 5-HT signaling in the hippocampus
and amygdala modulates conditioned fear (Almada et al., 2009; Li et al.,
2006). Activation of 5-HT1A postsynaptic receptors in the dorsal hippo-
campus (Li et al., 2006; Stiedl et al., 2000), dorsal periaqueductal gray
(Broiz et al., 2008), and amygdala (Li et al., 2006) reduces the expression
of fear-conditioned behaviors. Although these studies indicate that 5-
HT1A receptors modulate the expression of conditioned fear, little re-
search is available on whether 5-HT1A receptors modulate the forma-
tion of conditioned fear. It is noteworthy that injection of a 5-HT1A
receptor agonist into the dorsal hippocampus prior to training was
shown to impair fear conditioning, indicating that activation of 5-
HT1A receptors in thehippocampus is sufficient to disrupt the formation
of fear memories (Stiedl et al., 2000). Recently, we have shown that
pharmacological activation of 5-HT1A autoreceptors in theDRNdisrupts
both the acquisition and expression of conditioned defeat (Cooper et al.,
2008). This supports the idea that 5-HT signaling in the forebrain can
modulate conditioned defeat. Thus, the conditioned defeat model pro-
vides a rare opportunity to investigate whether 5-HT1A receptor signal-
ing in the BLAmodulates the formation ofmemories for aversive events.

The goal of the current study was to determine whether 5-HT1A
receptors are part of the neural circuitry in the BLA controlling the
acquisition and expression of conditioned defeat. We hypothesized
that injection of a 5-HT1A receptor agonist into the BLA would de-
crease both the acquisition and expression of conditioned defeat
and that injection of a 5-HT1A receptor antagonist into the BLA
would facilitate the acquisition and expression of conditioned defeat.

2. Materials and methods

2.1. Subjects

We used male Syrian hamsters (Mesocricetus auratus) that
weighed 120–140 g (3–4 months) at the start of the study. Older
hamsters (160–180 g, N6 months) were individually housed and
used as resident aggressors (RAs) for social defeat training. Younger
hamsters (90–100 g, approximately 2 months) were group-housed
(4 per cage) and used as non-aggressive intruders for conditioned
defeat testing. All animalswere purchased fromCharles River Laborato-
ries and were housed in polycarbonate cages (12 cm×27 cm×16 cm)
with corncob bedding, cotton nesting materials, and wire mesh tops.
Food and water were available ad libitum. Cages were not changed for
one week prior to training to allow individuals to scent mark their ter-
ritory. Animals were housed in a temperature controlled room (21±
2 ºC) and kept on a 14:10 h light:dark cycle. All procedures were ap-
proved by the UT Institutional Animal Care and Use Committee and
follow the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

2.2. Stereotaxic surgery

Hamsters were anesthetized with isoflurane and stereotaxically
implanted bilaterally with 26-gauge guide cannulae aimed at the
BLA. The stereotaxic coordinates were 0.4 mm posterior and 3.9 mm
lateral to bregma, and 2.2 mm below dura. During microinjection, a
33-gauge injection needle was inserted that projected 4.0 mm
below the guide cannula for a final projection of 6.2 mm below
dura. After surgery, dummy stylets that projected 0.1 mm below the
guide cannulae were inserted into the cannulae to maintain patency.
Animals were given 10–14 days to recover from surgery before be-
havioral experiments and were handled daily.

2.3. Conditioned defeat protocol

2.3.1. Social defeat training
Social defeat training consisted of a single aggressive encounter in

the cage of a RA. In Experiments 1 and 2 we expected flesinoxan to
decrease conditioned defeat behavior and subjects received a 15 min
social defeat to avoid a floor effect on later submissive/defensive be-
havior at testing. In Experiments 3 and 4 we expected WAY-100635
to increase conditioned defeat behavior and subjects received a subop-
timal 5 min social defeat to avoid a ceiling effect on later submissive/
defensive behavior at testing. When drugs were given prior to social
defeat, defeats were digitally recorded and the behavior of the
RA was quantified later using Noldus Observer (Noldus Information
Technology, Wageningen, Netherlands). We quantified the latency to
first attack, total number of attacks, and total duration of aggression
displayed. Any animal injured such that it bled was treated and
removed from the study (1 animal total, 0.4% of subjects). To evaluate
whether drugs altered behavior at testing in the absence of social
defeat, we included no defeat control groups. No defeat control ani-
mals were placed in the dirty, empty cage of a RA for 5 or 15 min so
that they experienced the same olfactory cues and novel environment
as the defeated animals.

2.3.2. Behavioral testing
Behavioral testing occurred 24 h after social defeat training and

consisted of a 5 min social interaction test, during which a non-
aggressive intruder was placed in the subject's cage. Non-aggressive
intruders are younger, group-housed animals that display social and
nonsocial behavior, and at testing we excluded those intruders that
displayed agonistic behavior. All testing sessions were digitally
recorded and the behavior of the subject was quantified using Noldus
Observer. We quantified the total duration of the following categories
of behavior: submissive/defensive (flee, avoid, upright and side defen-
sive postures, tail-up, stretch-attend, head flag); aggressive (chase,
attack including bite, upright and side offensive postures); social
(nose touching, sniff, approach); and nonsocial (locomotion, grooming,
nesting, feeding) (Albers et al., 2002). We also quantified the frequency
of flees, stretch-attend postures, and attacks. All video scoringwas done
by a single researcher blind to experimental conditions. On a subset of
videos, inter-rater reliability in submissive/defensive behaviorwas N90%.

2.4. Drugs

Flesinoxan-hydrochloride (courtesy of Solvay Pharmaceuticals, now
part of Abbot Laboratories) was dissolved in sterile saline (pH=6.1),
which was used as a vehicle control at a similar pH. Flesinoxan precip-
itates at physiological pH and is commonly used at pH ranging from
4.2 to 5.5 (Compaan et al., 1997; Cooper et al., 2008; Sibug et al.,
2000; Sporton et al., 1991). Flesinoxan is a highly selective 5-HT1A
receptor agonist (Schoeffter and Hoyer, 1988). WAY-100635 (Sigma
Aldrich) was also dissolved in sterile saline (pH=7.4). WAY-100635
is a highly selective antagonist for the 5-HT1A receptor (Mos et al.,
1997). Flesinoxan, WAY-100635, and saline vehicle were injected at
volumes of 200 nl per side.

2.5. Experiments 1 and 2: 5-HT1A receptor agonist and conditioned defeat

We designed Experiment 1 to test whether injection of a 5-HT1A
receptor agonist into the BLA prior to social defeat would decrease



Fig. 1. A representative photomicrograph is shown of a hamster coronal brain section
injected with India ink and stained with neutral red. The injection site is clearly visible
within theBLA. Thebasolateral complex (BLA and LA) is roughly outlined. BLA– basolateral
amygdala, LA – lateral amygdala, CeA – central amygdala.
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the acquisition of conditioned defeat. We bilaterally infused flesi-
noxan (400 ng, N=8; 800 ng, N=11; or 1200 ng, N=10) or vehicle
(N=11) into the BLA 10 min prior to a 15 min social defeat. For no
defeat control subjects, we bilaterally infused flesinoxan (1200 ng,
N=9) or vehicle (N=10) into the BLA 10 min prior to a 15 min expo-
sure to an empty RA cage. The doses of flesinoxan used here are based
on doses that were effective in the hamster DRN (Cooper et al., 2008).
For drug injection, a 1 μl syringe (Harvard Instruments) was con-
nected to an injection needle via PE-20 polyethylene tubing. Injec-
tions took place over a 1 min period using a Harvard Syringe Pump
(Harvard Instruments), and needles were left in place for 1 min
after the infusion to allow drug diffusion. Any animal that did not re-
ceive successful bilateral injections was excluded from data analysis.
Subjects were tested for conditioned defeat 24 h following social defeat.

Experiment 2was designed to testwhether injection of a 5-HT1A re-
ceptor agonist into the BLA prior to behavioral testing would decrease
the expression of conditioned defeat. Subjects received a 15 min social
defeat or empty RA cage exposure. Twenty-four hours later, we bilater-
ally infused flesinoxan (400 ng, N=12; 800 ng, N=10; or 1200 ng,
N=11) or vehicle (N=11) into the BLA 10 min prior to behavioral test-
ing. For no defeat control subjects, we bilaterally infused flesinoxan
(1200 ng, N=7) or vehicle (N=9) into the BLA 10 min prior to be-
havioral testing.

2.6. Experiments 3 and 4: 5-HT1A receptor antagonist and conditioned
defeat

In Experiment 3, we tested whether injection of a 5-HT1A receptor
antagonist into the BLA prior to social defeat would increase the ac-
quisition of conditioned defeat. We bilaterally infused WAY-100635
(400 ng, N=10 or 1600 ng, N=11) or vehicle (N=10) into the BLA
10 min prior to a 5 min social defeat. For no defeat control subjects,
we bilaterally infused WAY-100635 (400 ng, N=12) or vehicle
(N=10) into the BLA 10 min prior to a 5 min empty RA cage exposure.
We selected these doses of WAY-100635 on the basis of previous
research in which we injected WAY-100635 into the DRN (Cooper et
al., 2008). Twenty-four hours after social defeat, we tested subjects for
conditioned defeat.

In Experiment 4, we tested whether injection of a 5-HT1A receptor
antagonist into the BLA prior to behavioral testing would increase the
expression of conditioned defeat. Subjects received a 5 min social de-
feat or empty cage exposure. Twenty-four hours later, we bilaterally
infused WAY-100635 (400 ng, N=10 or 1600 ng, N=10) or vehicle
(N=10) into the BLA 10 min prior to behavioral testing. For no defeat
control subjects, we bilaterally infusedWAY-100635 (400 ng, N=11)
or vehicle (N=13) into the BLA 10 min prior to testing.

2.7. Histology

Immediately following testing, animals were given a lethal cocktail
of 93% sodium pentobarbital and 7% isopropyl alcohol (Sleep Away,
Webster Veterinary) and infused with 200 nl of India ink into the BLA.
Brains were removed, frozen on dry ice, and stored at −80 °C. Brains
were sliced at 30 μm on a cryostat, and sections were stained with neu-
tral red and coverslipped. Sections were examined under a light micro-
scope for evidence of ink in the BLA (Fig. 1). Subjects with bilateral
injection sites within 100 μm of the BLA were included in analysis
(Fig. 2). Subjects with bilateral injection sites N300 μm from the BLA
were analyzed as anatomical controls. We excluded subjects with a uni-
lateral injection site N100 μm from the BLA and one subjectwith bilateral
injection sites that were on the border of the BLA (100–300 μm).

2.8. Data analysis

Conditioned defeat data were analyzed using a 2-way between
subjects analysis of variance (ANOVA) with one factor as defeat
experience (defeat or no defeat control) and the second factor as
dose of drug. The duration of submissive/defensive, aggressive, social,
and nonsocial behaviors were used as dependent variables. Agonistic
behavior of the RAs during social defeat was analyzed using 1-way
ANOVAs. Statistically significant differences found in the 2-way
ANOVA were further analyzed using either a 1-way ANOVA for
defeated subjects with Tukey's post hoc tests or an independent sam-
ple t-test for no defeat controls. All statistical tests were two-tailed,
and the α level was set at p≤0.05.
3. Results

3.1. Experiment 1: 5-HT1A receptor agonist infused into the BLA at
acquisition

The injection of flesinoxan into the BLA prior to social defeat re-
duced the acquisition of conditioned defeat (Fig. 3). We found a sig-
nificant main effect of defeat experience (F(1,53)=14.38, pb0.001)
and a significant defeat experience×dose of flesinoxan interaction
(F(1,53)=4.23, p=0.045) on the total duration of submissive/defensive
behavior displayed at testing. Specifically, defeated individuals injected
with 1200 ng of flesinoxan displayed a lower duration of submissive/
defensive behavior at testing when compared to defeated vehicle
controls (F(3,36)=3.31, p=0.031; Tukey, p=0.024). Defeated animals
injected with 1200 ng of flesinoxan did not significantly differ from
any no defeat control group in submissive/defensive behavior.

We found amain effect of defeat experience on aggressive (F(1,53)=
4.65, p=0.036), social (F(1,53)=14.54, pb0.001), and nonsocial (F(1,53)=
4.85, p=0.032) behavior displayed at testing (Fig. 3). We did not find a
defeat experience×dose of flesinoxan interaction for aggressive, social
or nonsocial behavior displayed at testing. Additionally, we did not find
a drug effect in no defeat control groups for any category of behavior.

Fifteen animals received injections that were N300 μm outside of
the BLA and were analyzed as anatomical controls. Flesinoxan infused
outside of the BLA prior to social defeat did not appear to reduce
submissive/defensive behavior at testing (Vehicle: 35.26±26.05,
N=4; 400 ng: 36.03±22.85, N=2; 800 ng: 42.55±8.43, N=3;
1200 ng: 29.66±10.05, N=6).

To ensure that the effect of flesinoxan on the acquisition of condi-
tioned defeat was not due to differences in the quality of social defeat,
we scored the behavior of the RAs during social defeat. The treatment
groups did not significantly differ in any measure (Table 1).



Fig. 2. The location of BLA injection sites is shown using illustrations adapted from a hamster stereotaxic atlas (Morin and Wood, 2001). The distances shown for each illustration
are relative to bregma. A schematic shows injection sites for a) Experiments 1 and 2 and b) Experiments 3 and 4. Black circles indicate the approximate placement of injection sites
within the BLA. Open circles represent injection sites for anatomical controls. Misplaced injections were most often given into the central amygdala, but also occurred in the piri-
form cortex, caudate putamen, and globus pallidus.

Fig. 3. Durations (mean±SE) of submissive and defensive, aggressive, social and nonsocial behaviors are shown during a 5 min test with a non-aggressive intruder. Social defeat
animals (shaded bars) received an injection of flesinoxan or vehicle into the BLA 10 min prior to 15 min social defeat training. No defeat controls (white bars) received an injection
of flesinoxan or vehicle into the BLA 10 min prior to exposure to the empty cage of a resident aggressor. Asterisks (*) indicate treatments that differ from socially defeated vehicle
controls. Double asterisks (**) positioned above a horizontal line indicate that defeated individuals differ from no defeat controls.
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Table 1
Flesinoxan treatment did not alter social defeat experience (mean±SE).

Vehicle 400 ng 800 ng 1200 ng p

Aggression (s) 389.8±45.8 415.5±71.1 424.7±62.9 354.4±41.2 ns
Latency to attack (s) 76.2±31.7 99.7±57.4 79.7±32.8 64.8±42.9 ns
Number of attacks 20.4±3.1 19.2±2.7 17.4±1.7 15.1±2.8 ns

Subjects received injection of flesinoxan (400 ng, 800 ng, or 1200 ng) or vehicle into the basolateral amygdala 10 min prior to social defeat training. ns=not significant.
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3.2. Experiment 2: 5-HT1A receptor agonist infused into the BLA at
expression

The injection of flesinoxan into the BLA prior to behavioral testing
reduced the expression of conditioned defeat (Fig. 4). We found a sig-
nificant main effect of defeat experience (F(1,53)=17.63, pb0.001)
and a significant defeat experience×dose of flesinoxan interaction
(F(1,53)=4.00, p=0.05) on the total duration of submissive/defensive
behavior displayed at testing. Specifically, defeated individuals injected
with 800 ng and 1200 ng of flesinoxan displayed a lower duration of
submissive/defensive behavior at testing when compared to vehicle
controls (F(3,40)=3.87, p=0.016; Tukey, p=0.027 and; Tukey, p=
0.031, respectively). There was no significant difference in submissive/
defensive behavior between defeated individuals injected with 800 ng
or 1200 ng of flesinoxan and vehicle or drug-treated no defeat control
individuals. Among no defeat controls, there was no effect of flesinoxan
on the duration of submissive/defensive behavior at testing. There was
a main effect of defeat experience on aggressive behavior at testing
Fig. 4. Durations (mean±SE) of submissive and defensive, aggressive, social and nonsocial
experienced a 15 min social defeat (shaded bars) and no defeat controls (white bars) receiv
Asterisks (*) indicate treatments that differ from socially defeated vehicle controls. Double a
from no defeat controls.
(F(1,54)=21.32, pb0.001), indicating that no defeat controls showed
significantly more aggressive behavior at testing than did defeated ani-
mals (Fig. 4). There was not a significant defeat experience×dose of fle-
sinoxan interaction on aggression.

There was no main effect of defeat experience and no interaction of
defeat experience×dose of flesinoxan on the amount of social behavior
displayed at testing, although therewas a significantmain effect of dose
(F(3,54)=5.79, p=0.002). Further analysis indicated there was a signif-
icant difference among defeated animals (F(3,40)=5.075, p=0.005),
such that injection of 400 ng of flesinoxan resulted in a lower duration
of social behavior compared to vehicle controls (Tukey, p=0.004).
There was no effect of flesinoxan on the duration of social behavior
among no defeat controls. A similar pattern was observed for nonsocial
behavior, such that there was no main effect of defeat experience, no
defeat experience×dose of flesinoxan interaction, and a significant
main effect of dose (F(1,54)=5.98, p=0.001). Among defeated animals,
injection of 400 ng of flesinoxan into the BLA resulted in a greater dura-
tion of nonsocial behavior when compared to vehicle animals (F(3,40)=
behaviors are shown during a 5 min test with a non-aggressive intruder. Animals that
ed an injection of flesinoxan or vehicle into the BLA 10 min prior to behavioral testing.
sterisks (**) positioned above a horizontal line indicate that defeated individuals differ

image of Fig.�4
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7.29, p=0.001; Tukey, pb0.001). Therewas no effect of flesinoxan dose
on the duration of nonsocial behavior in no defeat controls. Although
400 ng of flesinoxan disrupted the balance of social and nonsocial
behavior, the elevated nonsocial behaviorwas not due to hyperlocomo-
tion and likely did not contribute to impairment in conditioned
defeat because higher doses of flesinoxan did not produce similar
disruption.

Ten animals received injections that were more than 300 μm
outside of the BLA and were analyzed as anatomical controls. Flesi-
noxan infused outside of the BLA prior to behavioral testing did not
appear to reduce submissive/defensive behavior at testing (Vehicle:
79.1±0.0, N=1; 400 ng: 21.5±0.0, N=1; 800 ng: 31.25±14.43,
N=4; 1200 ng: 79.84±31.49, N=4). To increase the sample size of
our anatomical control groups, we combined the vehicle, 800 ng and
1200 ng groups from experiments 1 and 2. Analysis of the combined
groups suggests that flesinoxan infused outside of the BLA either
prior to social defeat or to behavioral testing did not significantly
reduce submissive/defensive behavior at testing (pN0.05; Vehicle:
44.03±22.01, N=5; 800 ng: 36.1±8.66, N=7; 1200 ng: 53.1±
16.65, N=9).

3.3. Experiment 3: 5-HT1A receptor antagonist infused into the BLA at
acquisition

Injecting WAY-100635 into the BLA prior to social defeat did not
increase the acquisition of conditioned defeat (Fig. 5). We found a sig-
nificant main effect of defeat experience on submissive/defensive be-
havior (F(1,48)=13.80, p=0.001), indicating that defeated animals
showed significantly more submissive/defensive behavior at testing
Fig. 5. Durations (mean±SE) of submissive and defensive, aggressive, social and nonsocial
animals (shaded bars) received an injection of WAY-100635 or vehicle into the BLA 10 min
tion of WAY-100635 or vehicle into the BLA 10 min prior to exposure to the empty cage of a
defeated individuals differ from no defeat controls.
than did no defeat controls (Fig. 5).We found amain effect of defeat ex-
perience on aggressive (F(1,48)=10.64, p=0.002), social (F(1,48)=5.81,
p=0.02), and nonsocial (F(1,48)=7.57, p=0.008) behavior displayed
at testing (Fig. 5). No other significant differences were found.

3.4. Experiment 4: 5-HT1A receptor antagonist infused into the BLA at
expression

The injection of WAY-100635 into the BLA prior to behavioral test-
ing did not increase the expression of conditioned defeat (Fig. 6).
There was a significant main effect of defeat experience on submissive/
defensive behavior (F(1,49)=29.30, pb0.001), such that socially
defeated animals displayed more submissive/defensive behavior than
did no defeat controls (Fig. 6). We found a main effect of defeat experi-
ence on aggressive (F(1,49)=7.16, p=0.01) and social (F(1,49)=4.72,
p=0.035) behavior displayed at testing (Fig. 6). No other significant
differences were found.

4. Discussion

We have shown that injection of the 5-HT1A receptor agonist fle-
sinoxan into the BLA decreases both the acquisition and expression of
conditioned defeat. These results suggest that pharmacological acti-
vation of 5-HT1A receptors in the BLA prior to social defeat training
is sufficient to impair the formation of conditioned defeat, and that
their activation prior to testing is sufficient to disrupt the production
of submissive and defensive behavior. The effects of flesinoxan injec-
tion appear to be specific to the BLA, as injections of flesinoxan out-
side the BLA had no effect. Additionally, flesinoxan treatment did
behaviors are shown during a 5 min test with a non-aggressive intruder. Social defeat
prior to 5 min social defeat training. No defeat controls (white bars) received an injec-
resident aggressor. Double asterisks (**) positioned above a horizontal line indicate that

image of Fig.�5


Fig. 6. Durations (mean±SE) of submissive and defensive, aggressive, social and nonsocial behaviors are shown during a 5 min test with a non-aggressive intruder. Animals that
experienced a 5 min social defeat (shaded bars) and no defeat controls (white bars) received an injection of WAY-100635 or vehicle into the BLA 10 min prior to behavioral testing.
Double asterisks (**) positioned above a horizontal line indicate that defeated individuals differ from no defeat controls.
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not alter the behavior of no defeat control animals, which indicates
that activation of BLA 5-HT1A receptors specifically modulates
defeat-induced behavioral changes. We found that activation of BLA
5-HT1A receptors modulates defeat-induced changes in the duration
of submissive and defensive, but not aggressive, behavior. These re-
sults are consistent with previous research showing that changes in
submissive and defensive, but not aggressive, behavior are controlled
by fear and anxiety-related neural circuitry in the amygdala (Jasnow
et al., 2004; Jasnow et al., 2005; Markham and Huhman, 2008).
We also found that injection of the 5-HT1A receptor antagonist
WAY-100635 into the BLA did not alter the acquisition or expression
of conditioned defeat. Together our results suggest that activation of
BLA 5-HT1A receptors disrupts the acquisition and expression of con-
ditioned defeat whereas blockade of BLA 5-HT1A receptors does not
alter conditioned defeat.

There has been great interest in the role of 5-HT1A receptors in
the expression of depression- and anxiety-related behavior. Overall,
increased neural signaling at 5-HT1A receptors is associated with re-
duced anxiety. For example, 5-HT1A receptor partial agonists such as
buspirone are used clinically for their anxiolytic action (Hindmarch
et al., 1992; Traber and Glaser, 1987). Neuroimaging studies have
shown that individuals with lower 5-HT1A binding are more likely
to display clinical levels of anxiety and have increased basal cortisol
levels (Lanzenberger et al., 2007; Lanzenberger et al., 2010; Neumeister
et al., 2004; Rabiner et al., 2002; Tauscher et al., 2001). In animal studies,
5-HT1Aknockoutmice display significantly higher levels of anxiety-like
behavior compared to control animals (Akimova et al., 2009; Lesch,
2001; Ramboz et al., 1998). Additionally, transgenic mice that overex-
press the 5-HT1A receptor show decreased anxiety-like behavior
when compared with wild type mice (Kusserow et al., 2004).
The anxiolytic effect of systemic 5-HT1A receptor treatments may
be mediated by somatodendritic autoreceptors in the DRN or post-
synaptic receptors in the forebrain. At least part of the anxiolytic ac-
tion of 5-HT1A receptor activation is mediated by inhibitory
postsynaptic receptors in several forebrain regions (Kia et al., 1996;
Pazos and Palacios, 1985). For example, pharmacological activation
of 5-HT1A receptors in the hippocampus reduces fear and anxiety-
like behavior in several paradigms, including fear conditioning (Li
et al., 2006; Stiedl et al., 2000), elevated plus maze (Zhang et al.,
2010), and novelty suppressed feeding (Zhang et al., 2010). The BLA
is another important site where 5-HT1A receptor activation can mod-
ulate fear-related and anxiety-like behavior. Injection of a selective 5-
HT1A receptor agonist into the BLA reduces fear conditioning (Li et
al., 2006), fear-potentiated startle (Groenink et al., 2000), and inhibi-
tory avoidance in the elevated T-maze (Zangrossi et al., 1999). These
results are consistent with our current findings and together suggest
that pharmacological activation of BLA 5-HT1A receptors attenuates
fear and anxiety when responses are conditioned. In contrast, phar-
macological activation of BLA 5-HT1A receptors increases fear and
anxiety when responses are unconditioned, such as in social interac-
tion tests (Gonzalez et al., 1996) and for escape behavior in the ele-
vated T-maze (Zangrossi et al., 1999). It might be that conditioned
and unconditioned emotional responses are differentially affected
by activation of BLA 5-HT1A receptors.

5-HT1A receptor antagonists such as WAY-100635 have been
used to block the behavioral effects of 5-HT1A receptor activation
(File et al., 1996; Gonzalez et al., 1996). Also, some researchers have
used WAY-100635 for its ability to act as a silent antagonist, indicat-
ing that there was no expected effect of WAY-100635 when adminis-
tered alone (File et al., 1996; Stiedl et al., 2000). Blocking 5-HT1A
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receptors by themselves has produced inconsistent effects on anxiety-
related behavior and passive avoidance. Injection of WAY-100635 into
the dorsal periaqueductal gray failed to alter fear conditioning, although
injection of the 5-HT1A receptor agonist 8-OH-DPAT decreased it (Broiz
et al., 2008). In contrast, injection of WAY-100635 into the ventral hip-
pocampus was shown to reduce anxiety-like behavior in the elevated
plus maze (Nunes-de-Souza et al., 2002), and systemic administration
of WAY-100635 has been shown to enhance passive avoidance learn-
ing (Madjid et al., 2006). Site-specific injections of WAY-100635 are
often given at much higher doses (3000 ng or greater) than those
used in our study (400–1600 ng). We selected doses of WAY-100635
based on our previous research, and the work of others, showing be-
havioral effects of WAY-100635 when injected into the DRN (Cooper
et al., 2008; Pobbe and Zangrossi, 2005). It is possible that higher
doses of WAY-100635 are required to fully block the post-synaptic
5-HT1A receptors that occur outside of the DRN. In sum, our findings
with WAY-100635 suggest the serotonergic activity at BLA 5-HT1A
receptors is not necessary for the acquisition and expression of condi-
tioned defeat, because conditioned defeat occurs normally without it.

Although 5-HT1A receptors modulate the expression of anxiety-
like behavior following stressful events (Youn et al., 2009), much
less is known about the role of BLA 5-HT1A receptors in the acquisi-
tion of aversive memories, including conditioned fear. Although the
BLA is a critical brain region controlling cued fear conditioning, data
on 5-HT1A receptor modulation of fear conditioning are limited to
the hippocampus. Stiedl et al. (2000) found that bilateral intrahippo-
campal injection of 8-OH-DPAT prior to the training phase of fear con-
ditioning resulted in decreased freezing to both context and cue 24 h
later. Pretreatment with both subcutaneous and intrahippocampal
WAY-100635 completely reversed the effect on contextual freezing
but only partially reversed cued freezing (Stiedl et al., 2000). In a sep-
arate study, 8-OH-DPAT given peripherally prior to training in a pas-
sive avoidance paradigm resulted in decreased retention of avoidance
(Misane et al., 1998). These studies indicate that activation of fore-
brain 5-HT1A receptors impairs the formation of conditioned fear.
Our results suggest that activation of 5-HT1A receptors in the BLA im-
pairs the acquisition of stress-related changes in behavior. Our results
are consistent with previous studies that indicate that the BLA is the
primary site of neural plasticity controlling the formation of condi-
tioned defeat (Day et al., 2011; Jasnow et al., 2005; Markham et al.,
2010). Specifically, NMDA receptors in the BLA are a critical compo-
nent of the neurochemical signals controlling the formation of condi-
tioned defeat (Day et al., 2011; Jasnow et al., 2004). Others have
suggested that 5-HT1A receptors interact with glutamatergic and
cholinergic systems in the frontal cortex and hippocampus to alter
learning and memory processes (Kehr et al., 2010; Madjid et al.,
2006; Ogren et al., 2008). Our results suggest that the conditioned
defeat model may provide a valuable approach for investigating
5-HT1A receptor modulation of neural processes in the BLA that
underlie memories for aversive events. One interesting possibility is
that 5-HT1A receptor activation impairs the formation of conditioned
defeat by modulating NMDA receptor-dependent mechanisms in the
BLA. In sum, activation of 5-HT1A receptors in the hippocampus appears
to disrupt the formation of conditioned fear, whereas 5-HT1A receptors
in the BLA appear more critical for conditioned defeat.

In conclusion, we have found that injection of flesinoxan into the
BLA reduced both the acquisition and expression of conditioned de-
feat. These results indicate that the formation of conditioned defeat
and the display of submissive and defensive behavior at testing can
be reduced by activation of BLA 5-HT1A receptors. This finding ex-
tends our previous research on the role of 5-HT in conditioned defeat.
We have shown previously that flesinoxan injection in the DRN
blocks both the acquisition and expression of conditioned defeat,
and injection of WAY-100635 enhances both acquisition and expres-
sion (Cooper et al., 2008). 5-HT1A receptors in the DRN are autore-
ceptors, and their activation has been shown to decrease the release
of 5-HT in DRN projection regions (Sharp et al., 1989). From our
DRN study, we concluded that 5-HT release in DRN projection regions
enhances the formation and display of conditioned defeat behavior.
The current work expands upon the DRN findings by beginning to
explore the mechanisms of 5-HT action in the BLA, a key neural struc-
ture underlying the plasticity and behavioral output associated with
conditioned defeat (Day et al., 2011). Although we found that activa-
tion of BLA 5-HT1A receptors reduces the acquisition and expression
of conditioned defeat, we also found that blockade of BLA 5-HT1A re-
ceptors has no effect on conditioned defeat. These results suggest that
activation of BLA 5-HT1A receptors is sufficient to impair conditioned
defeat, although there appears to be a limited role for endogenous 5-
HT activity at BLA 5-HT1A receptors. We expect that endogenous 5-
HT may act at other 5-HT receptors, such as 5-HT2 receptors, to en-
hance the acquisition and expression of conditioned defeat. Others
have shown that activation of 5-HT2 receptors facilitates eyeblink
conditioning (Harvey, 2003), the expression of learned helplessness
(Strong et al., 2009), and anxiety in an open field test (Campbell
and Merchant, 2003). Also, recent evidence suggests that serotoner-
gic modulation of the BLA pyramidal neurons is largely controlled
by 5-HT2A receptor activity (Jiang et al., 2009). Future work will
need to address the mechanisms by which 5-HT can act at multiple
receptors, and perhaps in multiple brain regions, to modulate the ac-
quisition and expression of conditioned defeat.
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